Center Innovation Fund: JSC CIF

Variable Property Fluids for Dynamic Environmental Thermal Control

Completed Technology Project (2012 - 2012)

Project Introduction

Often in developing a thermal control system for environment control and life support systems a heat transfer fluid is selected on the basis of compromises between its heat transfer characteristics, operating range, and safety, among other parameters. The resulting choice is often a mediocre fluid with less than ideal performance or a complicated multi-fluid system. This study seeks to establish the merit of a fluid system having dynamic fluid properties, and whether better performance can be had from a dynamic fluid. Specifically, this study considers a representative water-based solution as the working fluid in a system where fluid properties are adjusted in response to the thermal environment and identifies whether turn-down ratio for heat rejection can be improved.

Spacecraft designed to meet current safety standards use a two-loop thermal control architecture. This project explores the merit of dynamic fluids as a technology to enable single loop architecture. A dynamic fluid is a solution or suspension where the composition is adjusted to tailor fluid properties throughout a mission to a spacecraft's environment. Often in developing a thermal control system for environment control and life support systems a heat transfer fluid is selected on the basis of compromises between its heat transfer characteristics, operating range, and safety, among other parameters. The resulting choice is often a mediocre fluid with less than ideal performance or a complicated multi-fluid system. This study seeks to establish the merit of a fluid system having dynamic fluid properties, and whether better performance can be had from a dynamic fluid. Specifically, this study considers a representative water-based solution as the working fluid in a system where fluid properties are adjusted in response to the thermal environment and identifies whether turn-down ratio for heat rejection can be improved. This study modeled a conventional single loop vehicle thermal control system with a dynamic fluid in one case and a static fluid in another. The dynamic fluid was modeled over a range of compositions where the static fluid contained a representative constant composition. The results of this model show up to a 17% improvement in turn-down with the selected fluid. This enhancement becomes single-loop enabling when employed in conjunction with variable heat rejection technology. Thermal desktop modeling of a simple vehicle thermal control system with freezable (also known as stagnating) radiator technology indicates that system turn-down can be improved significantly, approaching a 6:1 system turndown through to the lower freezing point of the dynamic fluid.

Anticipated Benefits

This technology promises mass and volume savings by enabling a single loop thermal control architecture.

Variable Property Fluids for Dynamic Environmental Thermal Control

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Links	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3

Variable Property Fluids for Dynamic Environmental Thermal Control

Completed Technology Project (2012 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Houston,
	Organization	Center	Texas
Jacobs Engineering	Supporting	Industry	Dallas,
Group, Inc.	Organization		Texas

Primary	U.S.	Work	Loca	tions
---------	------	------	------	-------

Texas

Links

NTR 1 (http://MSC-25703-1)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Center Innovation Fund: JSC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Carlos H Westhelle

Project Manager:

Thomas J Cognata

Principal Investigator:

Thomas J Cognata

Variable Property Fluids for Dynamic Environmental Thermal Control

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 Rejection and Storage

